
Estimation of Binding Affinities for Selective Thrombin Inhibitors via Monte
Carlo Simulations

Albert C. Pierce and William L. Jorgensen*
Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107

Received September 15, 2000

Monte Carlo simulations have been performed on a series of 20 active-site-directed thrombin
inhibitors to determine the interactions and energetics associated with the binding of these
compounds. Physicochemical descriptors of potential value in the prediction of binding affinities
were averaged during simulations of each inhibitor unbound in water and bound to thrombin.
Regression equations based on 3-5 descriptors are able to reproduce the experimental binding
affinities, which cover a 7 kcal/mol range, with rms errors of 1.0-1.3 kcal/mol, and yield
correlation coefficients, r2, of 0.7-0.8. On the basis of these results, the quantities most
important in determining the binding affinities are: (1) the enhancement of van der Waals
interactions in going from solution to the bound state, (2) the intramolecular strain induced in
the inhibitor upon binding, (3) the number of hydrogen bonds lost in the binding process, and
(4) the number of rotatable bonds in the inhibitor. The descriptors are physically reasonable
and, in combination with the insights gained from analysis of the simulation structures, suggest
directions for the development of improved thrombin inhibitors.

Introduction
Thrombin is a multifunctional member of the trypsin

family of serine proteases, and it is the final enzyme of
the blood coagulation cascade. The activity of thrombin
in this cascade is responsible for the cleavage of
fibrinogen to form fibrin and the activation of platelets
via the thrombin receptor.1,2 Fibrin then polymerizes
to form a network of fibers, entrapping the platelets and
leading to clot formation and cessation of blood flow.
Thrombin-induced clot formation is a necessary part of
the wound-healing process, but it is also associated with
many disease states including myocardial infarcation,
pulmonary embolism, and stroke.3 While anticoagulant
therapeutics have traditionally been available in the
form of heparin, which is administered by injection, and
the orally active coumadin, both of these treatments
have significant limitations in safety and efficacy.4 An
injectable form of the thrombin inhibitor argatroban has
recently been approved by the FDA, but only for the
relatively rare condition of heparin-induced thrombocy-
topenia.5 The direct inhibition of thrombin by an orally
available small-molecule inhibitor is therefore still a
high priority in medicinal chemistry research. The
inhibition of any of the closely related serine proteases
in the coagulation cascade might be therapeutically
effective, and eventually it may be possible to selectively
inhibit these proteases for optimal treatment of specific
conditions. However, at present the ease with which
thrombin can be purified and studied in soluble form,
along with the wealth of structural information avail-
able, has made it the most intensely studied target for
anticoagulation therapy.6

Given the abundance of structural information, which
includes numerous high-resolution crystal structures of
the enzyme complexed with a variety of inhibitors,
thrombin is also an ideal target for structure-based drug

design. While a cursory examination of these enzyme-
inhibitor complexes can give some direction in the
design process, a quantitative model for activity predic-
tion should provide a more discriminating test of the
inhibitory potential of new compounds. To this end,
numerous theoretical studies have been performed to
estimate the activities of series of thrombin inhibitors.
The methods used in these studies include correlation
of binding affinity with interaction energy,7 active site
mapping,8 comparative molecular field analysis,9 and
linear response calculations.10 All of these analyses have
their merits, but also their associated weaknesses. For
example, the interaction energy approach considers only
a single optimized conformation for the protein-ligand
complex, and the CoMFA model does not explicitly
consider the protein structure at all. Among these
studies, the linear response calculations are the most
thorough in their inclusion of explicit solvent and
extensive sampling of protein and ligand conformations.
The present work is intended to extend the linear
response analysis to a larger set of inhibitors in an effort
to create a more complete and accurate model for the
prediction of binding affinities.

The linear response method was devised as an alter-
native to the free energy perturbation (FEP) approach
to calculating the free energies of association (∆Gb) for
molecules in solution. The FEP method is theoretically
rigorous for the calculation of ∆Gb, explicitly accounting
for all enthalpic and entropic contributions to molecular
association in the limit of complete sampling in molec-
ular dynamics (MD) or Monte Carlo (MC) simulations.
It has proven successful in reproducing experimental
binding energies, and analysis of the accompanying
structures has generally provided good insight into the
structural basis of binding preferences.11,12 Due to
sampling issues, 10 or more simulations are required
for a single FEP to determine the relative binding
affinity of two similar drugs. This is quite time-consum-
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ing, but depending upon the required accuracy, it can
be worthwhile. However, computation of absolute bind-
ing affinities or of relative affinities between two dis-
similar drugs requires many more simulations to pro-
vide adequate sampling and is generally impractical for
protein-ligand complexes.

The ‘linear response’ (LR) or ‘linear interaction energy’
method was developed to enable more rapid calculation
of absolute binding affinities of diverse sets of ligands,
while maintaining the ensemble averaging, explicit
solvent, and some of the theoretical rigor of the FEP
methodology.13 The LR method requires only two simu-
lations per inhibitor: one with the inhibitor free in
solution, the other with the inhibitor bound to its target
protein with the entire complex solvated (see Figure 1).
The ∆Gb is then calculated based on the interaction
energies of the ligand with its bound environment as
compared to the corresponding energies of the ligand
in solution. As originally formulated by A° qvist,13 the
average van der Waals and electrostatic energies are
calculated for the ligand interacting with its environ-
ment in each of these two states. The free energy of
binding is then expressed as a linear combination of
these two energy differences according to eq 1:

The parameter â was set to 0.5, based on the quadratic
form of the free energy response of polar solutions to
changes in electric field. There was no theoretical basis
for a linear relationship between van der Waals (Len-
nard-Jones) interaction and binding energy, but it was
found that by adjusting R to 0.161, a very reasonable
fit to the experimental results was obtained for a set of
five endothiapepsin inhibitors.13

The methodology has since been applied to a variety
of systems with varying degrees of success. In general,
the value of R varies with different systems and force
fields, and in some studies it was also necessary to
adjust â in order to reproduce experimental binding
energies.14-16 The method was extended by Jorgensen
et al. to include a third parameter based on the change
in the solvent-accessible surface area (SASA).10,17 Eq 2,
which includes this term, provided improvement for
calculations of ligand-binding free energies, presumably
due to a more explicit treatment of the hydrophobic
effect:

However, further studies in our laboratory have found
that for free energies of solvation of ca. 200 organic

solutes18 and binding affinities of 40 HIV reverse
transcriptase inhibitors,19 the three terms in eq 2 are
not optimal. In these cases, it was found that a general
equation of the form of eq 3 was more suitable, with
each êi representing a physicochemical descriptor and
ci serving as the scaling factor:

In addition to the standard LR terms, some of the
descriptors considered were the numbers of donated and
accepted hydrogen bonds and the hydrophobic, hydro-
philic, and aromatic components of SASA. These values
are averaged in MC or MD simulations and taken as
the difference between the bound and unbound states
where appropriate.

This extended LR equation can be viewed as an
empirical scoring function for ligand binding. Indeed,
the original LR equation is at best a semiempirical
formula with only an approximate theoretical founda-
tion for the electrostatic term. The method also clearly
ignores many potentially important contributions to
ligand binding such as changes in the internal energy
for both ligand and protein and entropic effects.20

Equation 3 can include such factors, and its use can help
identify the key contributors to variations in binding
affinities. It is the aim of this work to use eq 3 to
generate a model for predicting the binding affinities
of active-site-directed thrombin inhibitors.

The generality of any model for predicting inhibitor
activities will depend on the set of inhibitors upon which
it is based (the training set). Therefore, a diverse set of
20 ligands (Figure 2) has been considered here with
activities ranging from 5 µM to 45 pM.21-25 As a target
for small-molecule inhibitors, the thrombin active site
is considered to have three different subsites.6 The
inhibitors under investigation include at least 7 differ-
ent functional groups in each of these pockets. Inhibitors
1-6 and 20 differ for the S1 or specificity pocket, which
is a deep cleft in the active site with an aspartate
residue at its base to complement the basic functionality
of the substrate or inhibitor. While the benzamidine-
based side chains of inhibitors 1-3 and 4-6 are
identical, the opposite stereochemistry and additional
glycine residue of the second set of inhibitors cause them
to bind in a different orientation from the first set.26

The alternative orientations of the benzamidine side
chains of the two groups of inhibitors lead to different
interactions within the active site (see Figure 3) such
that, from the perspective of compound diversity, the
pairs 1-4, 2-5, and 3-6 may be considered to have
different functional groups in the specificity pocket.

Inhibitors 3 and 6-12 are varied in the region of the
inhibitor that occupies the P-pocket (proximal) of the
binding site. This is a hydrophobic pocket located nearer
to the site of cleavage than the second hydrophobic
D-pocket (distal). The P-pocket moieties differ mainly
in their steric bulk and shape, with the exception of
compounds 11 and 12, which introduce additional
hydrogen-bonding functionality. The final set of inhibi-
tors, 13-19, vary in their D-pocket moiety. As this is a
hydrophobic region of the binding site, these compounds
differ almost exclusively in the size and orientation of
the substituent. It should be noted that while all

Figure 1. Schematic representation of the binding event and
the environments of the ligand in the bound and unbound
simulations.

∆Gb ) R〈∆EvdW〉 + â〈∆ECoul〉 (1)

∆Gb ) R〈∆EvdW〉 + â〈∆ECoul〉 + γ〈∆SASA〉 (2)

∆Gb ) ∑
i

ciêi + const (3)
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inhibitor Ki values were measured with the same assay,
inhibitors 1-10 had their activities measured using
bovine thrombin and inhibitors 11-20 were tested using
human thrombin.21-25 However, as these enzymes are
highly homologous, with only an arginine/lysine varia-
tion in the active site, observed activity differences are
small.26

Computational Details
Parameters. All protein residues were represented with

the OPLS all-atom (AA) force field. Inhibitor parameters were
developed with BOSS 4.227 in an automated fashion as follows.
Starting with an unoptimized structure of the inhibitor, a PM3
single-point calculation is performed and partial charges are
calculated using the CM1P procedure.28 Atom types from the
OPLS-AA force field29 are also assigned, and they determine

the Lennard-Jones parameters for each atom, the bond-
stretching parameters for each pair of bonded atoms, the angle-
bending parameters for triplets, and the torsion parameters
for quartets. A new Z-matrix (internal coordinate representa-
tion) is output with all degrees of freedom variable and all
force-field parameters assigned. This structure is then subject
to a molecular mechanics optimization before another PM3
single-point calculation is performed and final charges are
assigned. This procedure requires no user intervention, and
the resulting parameters have been shown to give good results
for the calculation of solvation free energies in a variety of
solvents.18 There is no scaling of the present CM1P charges
and each inhibitor has a net charge of +1.

MC Simulations. The energy-minimized structures of the
inhibitors served as the starting point for the unbound
simulations. Each inhibitor was solvated with a 24-Å cap of
approximately 1915 TIP4P water30 molecules centered on a
central inhibitor atom. The simulations were carried out with
the MC program MCPRO,31 which incorporates residue-based
cutoffs and moves. Each inhibitor was treated as a single
residue with all bonds, angles, and dihedrals varied. The
majority of attempted moves were translations and rotations
of solvent, with a solute move, consisting of translation,
rotation, and internal coordinate variations, carried out every
50 configurations.

Calculations performed on HIV-1 reverse transcriptase
inhibitors have shown that the averaged Coulombic interaction
of the ligand with solvent in the unbound state can be
dependent on the starting structure of the ligand.19 In that
study a simulated annealing protocol was developed to allow
increased sampling of the ligand and better convergence of the
solute-solvent electrostatic interaction. As all of the inhibitors
considered in this study carry a net charge, any problems with
the convergence of Coulombic interactions are likely to be
exacerbated. Consequently, five rounds of the following an-
nealing protocol were applied for the simulation of every
unbound inhibitor. In each round, 106 configurations are
covered at a temperature of 1000 K with only translational,
rotational, and torsional degrees of freedom sampled for the
inhibitor. The system is then equilibrated at 298 K for 5 ×
106 configurations sampling all degrees of freedom, followed
by 10 × 106 configurations of averaging. After this period of
averaging the cycle is begun again with another high-temper-
ature run. The final results are the averages of the results for
the five averaging periods.

Two crystal structures served as the starting points for the
protein-ligand complexes. The simulations of inhibitors 4-6
were based on the 2.3-Å crystal structure of bovine thrombin
with NAPAP (compound 4), PDB entry 1ETS.26 All other
inhibitors were modeled into the 2.5-Å crystal structure of
bovine thrombin with 4-TAPAP, PDB entry 1ETT.26 4-TAPAP
is similar to inhibitor 1, but with a p-tolyl group in the
D-pocket and a piperidinyl group in the P-pocket. For each
complex, hydrogen atoms were added to the protein, the
inhibitor was modeled into the binding site, and the complete
system was conjugate-gradient minimized for 250 steps with
a dielectric constant of 4r. If the inhibitor conformation was
not clearly defined by the bound structure of NAPAP or
4-TAPAP, minimizations were carried out for each reasonable
conformation of the inhibitor, and the conformation with the
lowest energy was used in the subsequent simulations. Next,
all protein residues beyond 16 Å from the inhibitor were
removed to leave a more manageable system of 171 protein
residues. Clipped N- and C-terminal ends of the protein chain
were then capped with acetyl and methylamine groups,
respectively. Several basic residues distant from the active site
were also neutralized in order for the inhibitor to experience
a charge-neutral environment in both the bound and unbound
states.

Each of these systems was then solvated with a 24-Å cap of
approximately 1030 TIP4P water molecules. All protein resi-
dues beyond 12 Å from the inhibitor were frozen, as were all
protein bond lengths and backbone degrees of freedom. Resi-
dues with at least one atom within 12 Å of the inhibitor had

Figure 2. The 20 thrombin inhibitors considered and their
inhibition constants.
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their angles and torsions varied, while all degrees of freedom
for the inhibitor were varied. The solvent-solvent, solute-
solvent, intersolute, and intrasolute nonbonded cutoffs were
9, 12, 12, and 9 Å, respectively, for all simulations. An
inhibitor-protein residue interaction list was calculated dur-
ing the first block of the simulation and held constant
throughout the calculation. All charged protein residues were
included in this list to ensure that all inhibitors experienced
a neutral environment for the entirety of the bound simula-
tion.13,14 Finally, the systems were equilibrated at 298 K for
10 × 106 configurations before the averaging of all quantities
was carried out over 10 × 106 configurations.

The quantities that were averaged and considered for the
fit of eq 3 to the inhibition data were the differences in
Coulombic, Lennard-Jones (van der Waals), and internal
energy (∆ECoul, ∆ELJ, and ∆Eint), hydrophobic, hydrophilic,
aromatic, and total surface areas (∆FOSA, ∆FISA, ∆ARSA,
and ∆SASA), hydrogen bonds donated, hydrogen bonds ac-
cepted, and total hydrogen bonds (∆HBDN, ∆HBAC, and
∆HB), and the number of rotatable bonds (#RB) for the ligand.
The SASA calculations used a 1.4-Å solvent probe with solute
atomic radii based on the OPLS-AA Lennard-Jones radius;
the same probe radius has been used in all of our related
studies, though other values could be tried. For the hydrogen
bond counts, a hydrogen bond is defined as present when a
heteroatom-hydrogen distance is less than 2.5 Å.

These quantities were fit to eq 3 with multiple linear
regression in the statistical package JMP.32 Descriptors were
chosen to maximize the value of the squared correlation
coefficient (r2) while keeping the total number of descriptors
to a minimum. The cross-validated r2, or q2, was calculated
by generating a series of 20 fits to the binding data, in each
case leaving out one inhibitor. The equation for each fit is then
used to ‘predict’ the value of the inhibitor that was not included
in the fit, and the correlation of these predictions with the
actual values gives q2.

In all discussions of thrombin structures, residues are
referred to according to the chymotrypsin numbering scheme.26

Results

Regression Equation. The experimental free ener-
gies of binding show the largest-in-magnitude correla-
tion coefficients (r) with ∆Eint (0.71), ∆HB (-0.53), ∆ELJ
(0.42), #RB (0.26), ∆SASA (-0.23), and ∆ECoul (-0.23).
The stongest correlations between these descriptors are
-0.43 for ∆ELJ/∆ECoul, 0.41 for ∆ELJ/∆SASA, 0.38 for
∆Eint/#RB, and 0.37 for ∆HB/∆SASA. If one takes the
first 4 descriptors and thereby avoids the two strongest
cross-correlations, the fit in eq 4 yields a correlation
coefficient of 0.83, r2 of 0.69, cross-validated q2 of 0.62,
rms error of 1.28 kcal/mol, and mean unsigned error of
1.00 kcal/mol for the 20 data points that range over 7.0
kcal/mol in ∆Gb (Figure 4):

If the #RB is dropped, the fit is about the same with an
r2 of 0.67 and rms error of 1.29 kcal/mol. There are many
alternative fits with 3-5 descriptors that yield regres-
sions with r2 values in the 0.73-0.83 range and only
slightly lower q2 values. With ∆ELJ, ∆SASA, and ∆Eint,
the r2 is 0.73 and rms error is 1.15 kcal/mol, while with
those terms plus ∆ECoul and #RB, eq 5 yields an r2 of
0.82, rms error of 1.00 kcal/mol, and mean unsigned
error of 0.67 kcal/mol:

However, we suspect that at this point the data are
being overfitted; the ratio of data points to descriptors
is only 4, the intercept is large, and the negative
coefficients for the ∆ECoul and ∆SASA terms are not
clearly physically reasonable. It may also be noted that
eq 2 yields a poor fit for the present data set with an r2

of 0.38 and rms error of 1.75 kcal/mol.
Equation 4 appears more sound because of use of the

4 least-correlated descriptors and because the coef-
ficients of the terms are all physically reasonable. In
our study of HIV-RT with 40 inhibitors, the most
important descriptors were also found to reflect the
protein-ligand Lennard-Jones interaction energy and
the change in number of hydrogen bonds, ∆HB.19 The

Figure 3. Binding site orientation of the benzamidine side chains of inhibitor 1 (left) and inhibitor 4 (right).

Figure 4. Plot of the predicted binding affinities (∆Gb calc.)
from eq 4 vs the experimental binding energies (∆Gb expt.).

∆Gb ) 0.142〈∆Eint〉 - 0.740〈∆HB〉 + 0.147〈∆ELJ〉 +
0.441〈#RB〉 - 13.30 (4)

∆Gb ) 0.167〈∆Eint〉 - 0.052〈∆ECoul〉 + 0.217〈∆ELJ〉 +
0.636〈#RB〉 - 0.031〈∆SASA〉 - 32.07 (5)
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HIV-RT inhibitors are comparatively nonflexible, so the
∆Eint and #RB terms are not important in that case.
For eq 4, the first term, based on the internal energy
change for the ligand, accounts for the fact that an
inhibitor is less likely to bind to the protein if confor-
mational strain is induced upon binding. A descriptor
for strain energy is intuitively appealing and has proven
useful in a number of studies.33,34 The second term,
∆HB, accounts for the reduction in inhibitor potency
associated with the loss of hydrogen bonds on transfer
from water to the protein active site. Due to the ideal
hydrogen-bonding environment provided by liquid wa-
ter, all inhibitors form fewer hydrogen bonds in the
active site of the protein, and the penalty for binding
free energies is 0.74 kcal/mol per hydrogen bond lost.
This is in reasonable accord with the results for 40
HIV-1 reverse transcriptase inhibitors, where each
hydrogen bond lost resulted in a 0.94 kcal/mol penalty.19

The third term, ∆ELJ, is the same descriptor used in
the original LR equation to describe binding due to
enhanced van der Waals contacts in the protein envi-
ronment, with the coefficient falling quite close to
A° qvist’s value of 0.161.13 The last independent variable
in the fit is the number of rotatable bonds, which should
be correlated with the entropy loss due to conforma-
tional restrictions imposed on the ligand in the bound
state. In an empirical scoring function based on 45
protein-ligand systems studied by Bohm et al.,35 this
was one of four terms found to be necessary to reproduce
binding affinities. In that case, the coefficient for this
quantity was 0.34, which is reasonably close to the value
of 0.44 found here. Finally, the constant term in the fit
includes the effects of binding forces that are not
explicitly accounted for in eq 4 and that are presumably
similar for all 20 ligands.

Some LR studies have found that it is possible to
replace the SASA term with a constant,14,36 as this
quantity varies little in many analogue series. In the
present case the constant term may also include the
electrostatic attraction, which is attenuated by the ∆HB
term. While it would be preferable to explicitly include
the term for ∆ECoul, the handling of this quantity has
generally been problematic for charged inhibitors,15,37

and its addition to eq 4 has negligible effect on the
present fit. An additional advantage of the ∆HB term
is that it converges much faster than ∆ECoul and is not
influenced by long-range effects. Consequently, smaller
systems could be studied with significantly shorter
periods of configurational averaging. This would reduce
the computational cost while still producing an effective
model for predicting binding affinities. A fit based on
the current simulations after only 1 million configura-
tions of averaging of the bound and unbound systems
gives an r2 of 0.65 with the same terms used in eq 4.
With some reasonable reduction in the equilibration
periods as well, the current processing time of 1-2 days/
inhibitor on a 750-MHz PentiumIII processor could be
reduced to a few hours. Of course, much faster ap-
proaches are available for estimating protein-ligand
binding energies that do not involve thermal averaging
and explicit representation of the solvent.20,35,38

Analysis of Binding Trends. Based on eq 4, in
combination with the data in Table 1, it is straightfor-
ward to assess the importance of the different contribu-

tions to binding affinity. The free energies associated
with the change in van der Waals (Lennard-Jones)
interaction cover a range of 2.4 kcal/mol. For the
changes in internal energy, hydrogen bonding, and
rotatable bonds the ranges are 4.2, 2.2, and 1.3 kcal/
mol, respectively. Thus, each term makes a significant
contribution to the overall binding affinities. Also, due
to the fact that ∆Eint, ∆HB, and #RB all penalize the
binding of most inhibitors, the final constant term is
necessarily negative. This is in accord with the argu-
ment that the constant term is accounting for large and
favorable contributions from the burial of surface area
and electrostatic attraction, including the salt bridge
with Asp189.

For specific binding trends in this set of inhibitors, it
is most useful to consider the three sets of inhibitors
that vary in their specificity pocket, P-pocket, and
D-pocket binding moieties. Inhibitors 1-6 and 20 all
vary in the basic group that forms the ion pair with
Asp189 in the specificity pocket. The benzamidine side
chain of compound 1 (Ki ) 52.4 nM) mimics the arginine
side chain of the preferred substrate and served as the
starting point for the experimental exploration of this
binding pocket.21 As illustrated in Figure 3, this inhibi-
tor forms two hydrogen bonds in the S1 pocket, leaving
two potential hydrogen bond donors unsatisfied. The
loss of two hydrogen bonds is clearly a liability for this
inhibitor, and its potency could likely be enhanced by
the elimination of one or more of these unpaired
hydrogen bond donors. The replacement of the benz-
amidine side chain with benzylamine accomplishes this
goal in compound 20 (Ki ) 3.3 nM), while the same end
is achieved for inhibitor 2 (Ki ) 45.5 nM) with the
substitution of a methyl group for one of the amidinium
protons not involved in a hydrogen bond. However, the
methyl group that replaces the amidinium proton in
compound 2 is too bulky for the binding pocket (see ∆ELJ
in Table 1) and there is no gain in potency. In contrast
to inhibitors 2 and 20, compound 3 (Ki ) 1.5 nM) has
its hydrogen bonding optimized through the introduc-
tion of an additional hydrogen-bonding amine function-

Table 1. Contributions from Individual Terms in Eq 4 to the
Free Energies of Bindinga

contributions from

inhibitor ∆ELJ ∆Eint ∆HB #RB ∆Gb calcd ∆Gb expt

1 -3.76 0.97 1.55 3.53 -11.02 -9.93b

2 -3.42 0.97 0.93 3.53 -11.29 -10.0b

3 -4.25 1.02 1.47 3.53 -11.53 -12.0b

4 -4.32 1.29 2.52 4.41 -9.40 -11.3b

5 -3.02 1.15 2.12 4.41 -8.63 -7.19b

6 -3.82 2.05 1.58 4.41 -9.08 -7.32b

7 -3.66 2.13 2.52 3.97 -8.33 -9.01c

8 -4.22 0.67 1.84 3.97 -11.04 -12.2c

9 -4.35 1.97 1.30 3.97 -10.41 -9.30c

10 -4.53 1.21 0.61 4.86 -11.16 -10.1c

11 -4.40 0.53 2.07 3.97 -11.12 -10.9d

12 -5.37 3.34 2.16 4.41 -8.76 -7.48d

13 -4.70 0.22 1.01 3.97 -12.80 -13.5e

14 -4.82 -0.82 0.53 3.97 -14.45 -14.1e

15 -3.83 2.54 1.18 3.97 -9.45 -11.0e

16 -3.85 1.14 1.28 3.97 -10.77 -11.5e

17 -3.36 2.76 0.33 4.41 -9.16 -10.5e

18 -4.88 -0.11 0.33 3.97 -13.99 -13.6e

19 -4.76 0.83 0.77 4.41 -12.04 -13.0e

20 -3.96 0.91 0.78 4.41 -11.16 -11.6f

a ∆Gb calcd from eq 4. ∆Gb expt ) RT ln(Ki). All quantities in
kcal/mol. b Ref 21. c Ref 22. d Ref 23. e Ref 24. f Ref 25.
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ality in the S1 pocket. The amine substitution leads to
the burial of two additional hydrogen-bonding atoms
relative to compound 1, but due to the orientation of
this amine group (see Figure 5) additional hydrogen
bonds can be formed with Asp189 and the backbone
carbonyl groups of Trp215 and Phe227. It is this net
gain of one hydrogen bond with no accompanying steric
penalty that leads to enhanced activity for compounds
with this side chain. As this side chain also confers
selectivity over the closely related serine protease
trypsin, it was used as the S1 moiety for the majority
of the subsequently developed inhibitors in this series.21

Due to the different binding mode of the NAPAP-based
inhibitors (4-6), substitutions at the benzamidine side
chain lead to steric and strain penalties, which reduce
the potency of 5 and 6.

Compounds 7-12 are varied in the region of the
inhibitor that binds in the hydrophobic P-pocket, which
is defined by residues His57, Tyr60A, Trp60D, and
Ile174. Among this set of inhibitors relative binding
affinities are determined largely by the steric fit of the
inhibitors in the binding pocket and intramolecular
strain induced in achieving this fit. Also, in the case of
compounds 11 and 12, the burial of two potential
hydrogen bond acceptors (Figure 6) leads to reduced
binding affinity. Despite this hydrogen bond loss, com-
pound 11 has a Ki of 11 nM, suggesting that a more
hydrophobic isostere would be a very potent inhibitor.
Analysis of the interactions of compound 12 with
thrombin illustrates the complex interplay among the
different forces affecting ligand binding. This inhibitor
has the most favorable ∆ELJ of all the compounds
considered in this study, yet it also has one of lowest
activities, with a Ki of 3.3 µM. The reason for this is
that compound 12 also has the least favorable contribu-
tion from ∆Eint of any inhibitor considered here. The
gas-phase minimum energy conformation of this mol-
ecule, and the conformation adopted in solution, has the
carbamate N-C(dO)-O-C torsion at or near 180°, as
in a Z-ester. In binding to thrombin this torsion must
take a value of approximately 60° (see Figure 6). The
gas-phase molecular mechanics energy of this confor-

mation is 10.5 kcal/mol higher than the energy of the
global minimum conformation. The torsional strain in
the bound conformation leads to the poor activity of this
inhibitor. In this case, substituting an ethylamide for
the carbamate could significantly improve inhibitor
activity due to the relatively small (0.5 kcal/mol) energy
difference between the 60° and 180° conformations of
the amide N-C(dO)-C-C torsion.

Compounds 8 and 13-19 vary in the region of the
inhibitor that binds in the D-pocket, a hydrophobic
pocket formed by residues Tyr60A, Leu99, Ile174, and
Trp215. The relative binding affinities among these
inhibitors are determined primarily by the quality of
the steric fit of their D-pocket moieties. The activities
of inhibitors 13-19 were determined against human
thrombin, so for comparison with these compounds the
activity of inhibitor 8 versus human thrombin (Ki ) 0.38
nM)24 should be used. It is clear from the relative
binding affinities of compounds 13, 14, and 16 that the
cycloalkyl groups of these inhibitors consistently form
more favorable interactions in the D-pocket than the
corresponding naphthyl substituent of inhibitors 8 and
15. It can also be seen in Figure 7 that there is a recess
behind the dimethylamino group of inhibitor 19. The
D-pocket moieties of compounds 14 and 19 are able to
bind in this niche, enhancing the van der Waals
interactions and potency of these inhibitors relative to
inhibitors 8 and 15. This is a fairly subtle effect that is
nevertheless revealed in the calculated ∆ELJ terms. The
explanation for the relatively poor activity of compound
17 (Ki ) 18.4) compared to inhibitor 8 can be deduced
from its binding mode, depicted in Figure 8, and its ∆ELJ
and ∆Eint terms, reported in Table 1. The reduced
affinity seems to be more a result of the methylene
linker introduced in this inhibitor rather than its
smaller aryl group. This additional sp3-hybridized car-
bon does not allow the aryl group to lay flat in the
binding pocket, so the only D-pocket interactions pos-
sible are at the sides of this binding pocket and even
these contacts require some degree of intramolecular
strain to achieve.

Conclusions
Regression equations have been developed for the

estimation of binding affinities of active-site-directed,

Figure 5. Hydrogen-bonding pattern of the benzamidrazone
side chain of inhibitors 3 and 7-19.

Figure 6. Binding site orientation of inhibitor 12 in the
P-pocket of thrombin. The P-pocket sulfonamide S of inhibitor
11 occupies approximately the same position as the carbamate
carbon depicted here. Neither of these groups is accessible to
hydrogen bond donors.
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small-molecule thrombin inhibitors. As in the original
LR method, this technique calculates the binding energy
as a function of the interactions of the inhibitor with
its environment in the bound and unbound states. On
the basis of eq 4, the four quantities found to be
important for the prediction of binding affinities are:
(1) the enhancement of van der Waals interactions upon
binding, (2) the number of hydrogen bonds lost in going

from solution to the bound state, (3) the intramolecular
strain induced in the inhibitor upon binding, and (4)
the number of rotatable bonds in the inhibitor. These
quantities are all physically reasonable as descriptors
for the calculation of ∆Gb, and this model for activity
prediction, along with the structural insights gained in
its generation, could aid in the development of novel
thrombin inhibitors. Expansion of the data set is also

Figure 7. Inhibitors 14 (dark) and 19 (light) bound to thrombin. Both of these inhibitors take advantage of a niche in the upper
right of the hydrophobic D-pocket.

Figure 8. Naphthyl moiety of inhibitor 8 lays flat in the D-pocket relative to the more solvent-exposed benzyl group of inhibitor
17.
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desirable to obtain greater statistical confidence in the
choice of optimal descriptors and to better gauge the
predictive abilities. The seemingly better results with
eq 5 indicate that caution is warranted in such studies
to avoid potential overfitting of the data that includes
significantly cross-correlated descriptors and coefficients
for descriptors that seem to have the wrong sign on a
physical basis.

While the calculations performed here are virtually
identical to those used in the standard LR method, the
flexibility of eq 3 allows for consideration of factors other
than the van der Waals and electrostatic interactions
in the estimation of binding affinities. In particular,
inhibitor strain and entropy loss upon binding, two
factors that cannot be accounted for with the standard
LR equation, are found to be important for the repro-
duction of experimental activities. Another advantage
of the terms in eq 4 is that since none of the descriptors
involve long-range interactions or slowly converging
quantities, significantly diminished computational effort
may be possible in future projects. By considering a
wider variety of contributions to protein-ligand binding
in calculations that can be executed in a shorter period
of time, the suggested approach represents a significant
improvement over the standard LR method.
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